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Stationary d.c. streaming due to shape
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transfer in liquid–liquid systems

By A. L. Y A R I N
Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
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The work is devoted to stationary streaming flows resulting from standing capillary
waves at interfaces between two immiscible liquids and their effect on the mass
transfer rate of a passive scalar. In particular, oscillating liquid droplets immersed
in another immiscible liquid are considered. Secondary streaming flows in the Stokes
layers near the interface are calculated, as well as the corresponding vortical flows
arising in the bulk. It is shown that the vortices can drastically enhance the mass
transfer rate of a passive scalar which is to be extracted by one liquid from the other.
The corresponding Sherwood number is of the order of [|uint|a/D1]

1/2, where |uint|
is the magnitude of the interfacial streaming velocity, a is the droplet radius, and
D1 is the diffusion coefficient in liquid 1 (inside the droplet). This means that the
effective diffusion coefficient is of the order of D1[|uint|a/D1]

1/2, which is two orders
of magnitude higher than D1. The results obtained show that such flows can be of
potential interest for novel bioseparator devices.

1. Introduction
Various waves (including standing capillary waves) are capable of generating sta-

tionary d.c. streaming flows (cf. the seminal paper of Longuet-Higgins 1953, the
monograph of Mei 1989, Chap. 9, and references therein). Dore (1970, 1972, 1973)
extended the theory for planar two-layer systems (cf. § 9 below). Such d.c. streaming
flows are kindred to the well-known acoustic streaming first recognized by Rayleigh
(1883, 1945). The streaming also arises when a cylinder or a sphere (solid, or a droplet,
or bubble) oscillates in a fluid or gas at rest, or vice versa; an oscillatory motion of
the medium is sustained about such bodies (cf. for example, Schlichting 1932, 1979,
and a recent review of Riley (1997), where such flows are termed Type (a)). They
can significantly affect the heat and mass transfer rate at the body surface (Davidson
1971, 1973; Gopinath & Mills 1993; Yarin et al. 1999; Kawahara et al. 2000; and
references therein).

The streaming flows can, as we expect, create vortices near liquid–liquid interfaces
and thus can be employed for enhancement of mass transfer in novel bioseparators.
Similar ideas were put forward in studies of the effective diffusion arising in vortical
flows in such contexts as fluid mixing in laminar flows, turbulent mixing in combustion,
heat flow in a convecting plasma, etc. (Rosenbluth et al. 1987; Vold 1999; and
references therein).

In a recent work Longuet–Higgins (1998) considered the streaming flows about a
spherically symmetric bubble undergoing small lateral and radial oscillations simul-
taneously; shape oscillations were not accounted for. In the present work we consider
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the streaming flow and the corresponding mass transfer effects generated by shape
oscillations of a droplet/bubble immersed in a host immiscible liquid. In particu-
lar, we consider standing capillary waves at an interface between a droplet and an
immiscible host liquid. Such monochromatic capillary waves on the droplet may be
generated acoustically as in Trinh, Zwern & Wang (1982) and Trinh & Wang (1982).
We demonstrate the appearance of stationary streaming flows. We then study their
effect on mass transfer at the interface and show that it may be enhanced drastically
by the streaming. This makes it possible to develop a new type of novel bioseparator
which employs shape oscillations of droplets in emulsions.

In § 2 physical estimates of the effects involved are given. In § 3 we present the
governing equations for the Stokes layers near the liquid–liquid interface with capil-
lary waves. Inner streaming flows arising near the interface of an oscillating droplet
are treated in § 4. The corresponding outer streaming in the bulk is considered
in § 5. It is matched with the inner streaming in § 6, where the flow field of the
stationary secondary flow arising inside and outside the droplet is discussed. The
corresponding particular cases are illustrated in § 7. Mass transfer through the
droplet interface is treated in § 8. Section 9 contains a summary and concluding
remarks.

2. Physical estimates for capillary oscillations of liquid droplets in
immiscible liquid–liquid systems

Standing ultrasonic waves are able to generate significant acoustic streaming flows
in gases (Trinh & Robey 1994; Yarin et al. 1999). In the latter work it was shown
that the streaming velocity in a gas is of the order of several cm s−1 for fields of about
160 to 165 dB. Assuming the amplitude of the standing wave in an ultrasonic acoustic
levitator as A0e = 2× 104 dyn cm−2 (which corresponds to 160 dB under the definition
of the sound pressure level, SPL, used in Yarin et al. 1999), the corresponding velocity
scale in the sound wave

B =
A0e

ρ0c0

(2.1)

for water is B = 0.133 cm s−1. Here ρ0 = 1 g cm−3 is the unperturbed density and
c0 = 15 × 104 cm s−1 is the sound velocity in water. Assuming the angular frequency
of the ultrasound wave as ω = 2π × 56 000 Hz, and the droplet radius a = 1 cm (we
consider a droplet levitated in a liquid–liquid system), then the estimate of the steady
streaming velocity (Yarin et al. 1999)

Bs =
B2

ωa
(2.2)

is Bs = 0.5 × 10−7 cm s−1. This estimate shows that it is practically impossible to
generate significant acoustic streaming flows in a liquid–liquid systems even with
recourse to acoustic levitators with high SPL values.

However, significant stationary streaming flows in liquid–liquid systems can be
generated by capillary waves. Consider a drop of liquid 1 levitated in an immiscible
liquid 2 and undergoing small forced capillary oscillations (cf. figure 1), which can be
imposed, for example, by an acoustic field with modulated amplitude like in Trinh et
al. (1982) and Trinh & Wang (1982). The droplet volume-equivalent radius is denoted
by a, the densities and (low) viscosities of the liquids by ρ1 and ρ2, and µ1 and
µ2, respectively, and the interfacial tension by σ. Buoyancy effects are neglected or



Stationary d.c. streaming due to droplet oscillations 323

1

2

O3

O2

O1
O

y

x

R

r (h )

h

X

Figure 1. Sketch of forced capillary oscillations of liquid droplet 1
immersed in an immiscible liquid 2.

compensated by the acoustic levitation force. We consider here only axisymmetric
modes. The frequency of the imposed oscillations is assumed to be close to one of
the eigenfrequencies (Lamb 1959, § 275)

ω =

{
n(n+ 1)(n− 1)(n+ 2)

[ρ1(n+ 1) + ρ2n]
· σ
a3

}1/2

, (2.3)

where n is the wavenumber.
Take the droplet volume as 1.5 cm3, which corresponds to a = 0.71 cm, ρ1 =

1 g cm−3, ρ2 = 0.9 g cm−3, σ = 70 g s−2. For n = 2 we obtain from (2.3) ω = 31.3 s−1,
and for n = 3, ω = 59.19 s−1. The inviscid solution for droplet oscillations of small
amplitude yields the following velocity components tangent to the interface in liquids
1 and 2:

U∗i = Bi sinωt
d

dθ
[Pn(cos θ)], (2.4)

where Pn is a Legendre polynomial. Here and hereinafter subscripts i = 1 and 2
correspond to liquids 1 (inside the droplet; cf. figure 1) and 2 (outside), respectively.
The velocity amplitudes are given by

B1 = − (aζ0n)ω

n
, B2 =

(aζ0n)ω

n+ 1
, (2.5a, b)

where aζ0n is the oscillation amplitude (ζ0n � 1). We take for the estimation ω =
(31.3 + 59.19)/2 = 45.25 s−1 and aζ0n = 0.071 cm. For the modes n = 2 and n = 3 we
obtain the average denominators in (2.5) as 2.5, whence from (2.5) |Bi| = 1.29 cm s−1.
This is the velocity magnitude of the primary flow due to the capillary oscillations of
the droplet.
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The corresponding steady streaming velocity is expected to be of the order of

Bs ' B2
i

ωa
. (2.6)

For ω ∼ 45.25 s−1 and a = 0.71 cm, (2.6) yields Bs = 0.052 cm s−1.
The following simplifications were used to arrive at (2.4): (i) viscous effects in the

bulk were neglected, (ii) terms ∆Ui = O(Biε), ε ∼ ζ0n � 1 were omitted, since the
boundary conditions at the wave interface have been projected onto the unperturbed
interface, and (iii) the geometrical factors in the boundary conditions at the interface
were linearized assuming small angles of inclination, which means that terms O(Biε

2)
were neglected. The terms ∆Ui will be considered in more detail in § 4, where we show
that they do not affect the stationary streaming arising due to the primary capillary
wave, whereas the terms O(Biε

2) do not affect the stationary streaming due to their
smallness.

Viscous effects in the bulk can be neglected for Reynolds numbers (Levich 1962)

Re =
ωa2

ν1

� 1. (2.7)

Taking the kinematic viscosity of liquid 1 as ν1 = 0.032 cm2 s−1, we obtain Re = 713,
and the inequality (2.7) is satisfied, which supports a posteriori recourse to the inviscid
solution for the primary flow in the bulk. However, for Re � 1 near the interface
Stokes layers should exist (boundary layers), where steady d.c. streaming is developed.
The thickness of these layers is estimated to be of the order of

δ =
( ν
ω

)1/2

, (2.8)

which yields for νi = 0.032 cm2 s−1 and ω ∼ 45.25 s−1 the value of δ = 0.027 cm �
a = 0.71 cm.

The reciprocal Strouhal number

S−1 =
|Bi|
ωa
∼ ε (2.9)

is estimated using the following values: |Bi| = 1.29 cm s−1, ω = 45.25 s−1 and a =
0.71 cm, which yields S−1 = 0.04. This value is sufficiently small compared to unity
to permit application of the method of successive approximations for calculating the
d.c. streaming flow (Schlichting 1932, 1979; Yarin et al. 1999).

3. The governing equations for the Stokes layers near the interface
In considering the Stokes layers at the beginning of this section, we dispense for

the moment with the subscripts corresponding to liquids 1 and 2, since we are dealing
with both of them simultaneously. The equations describing the flow in the Stokes
layers near the interface, where the viscous effects are important, are written as

∂ur

∂x
+
∂vr

∂y
= 0, (3.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=
∂U

∂t
+U

∂U

∂x
+ ν

∂2u

∂y2
(3.1b)

(cf. Schlichting 1979).
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For the Stokes layers near the interface, coordinates x and y are taken along the
perturbed interface and normal to it, respectively. Replacing the scheme by that of
figure 1 (the x-coordinate taken along the unperturbed interface), the difference is
of O(ε2), which we neglect throughout the following analysis and use x accordingly.
Coordinate y is negative in liquid 1 and positive in liquid 2, its zero corresponding to a
perturbed interface. Also r(x) is the cross-sectional radius of the droplet, r = a sin(x/a).
The velocity components u and v refer to x and y respectively. The velocity at the
outer boundary of the Stokes layers U is given by

U = U∗ + ∆U, (3.2)

where U∗ = O(B) is given by (2.4) and ∆U is its correction of O(εBi) mentioned in § 2.
Equations (3.1a, b) are referred to the axes moving with the perturbed interface. The
fact that the continuity equation (3.1a) has the same form as that with y measured
from the interface at rest is proved in Lamb (1952, p. 12). Equation (3.1b) is discussed
at the end of the present section.

In our treatment we render the velocity components u, U, U∗ and ∆U dimensionless
by the velocity scale B, v by Bδ/a, x and r by a, y by δ, and t by ω−1. The governing
equations (3.1) and (3.2) become

∂ūr̄

∂x̄
+
∂v̄r̄

∂ȳ
= 0, (3.3a)

∂ū

∂t̄
+ ε

(
ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
=
∂Ū∗
∂t̄

+
∂2ū

∂ȳ2
+ ε

(
Ū∗
∂Ū∗
∂x̄

+
∂∆Ū

∂t̄

)
, (3.3b)

where dimensionless variables are denoted by overbars.
By virtue of the smallness of the parameter ε, we resort to the asymptotic expansions

ū = ū(0)(x̄, ȳ, t̄ ) + εū(1)(x̄, ȳ, t) + · · · , v̄ = v̄(0)(x̄, ȳ, t̄) + εv̄(1)(x̄, ȳ, t̄) + · · · , (3.4a, b)

ū(0), v̄(0), ū(1), v̄(1) = O(1). (3.4c)

Here and hereinafter superscripts 0 and 1 are used to distinguish between the leading-
order and perturbation velocities. Substituting (3.4) in (3.3), we obtain at the leading
order O(1) the following equations:

∂u(0)r

∂x
+
∂v(0)r

∂y
= 0, (3.5a)

∂u(0)

∂t
= ν

∂2u(0)

∂y2
+
∂U∗
∂t

. (3.5b)

The next order, O(ε), yields

∂u(1)r

∂x
+
∂v(1)r

∂y
= 0, (3.6a)

∂u(1)

∂t
= ν

∂2u(1)

∂y2
−
[
u(0) ∂u

(0)

∂x
+ v(0) ∂u

(0)

∂y

]
+U∗

∂U∗
∂x

+
∂∆U

∂t
. (3.6b)

Terms O(ε2) and smaller are not considered. Equations (3.5) and (3.6) are presented
in the dimensional form for convenience; u(0) = Bū(0), v(0) = (Bδ/a)v̄(0), u(1) = εBū(1),
and v(1) = ε(Bδ/a)v̄(1).

It is emphasized that in the present problem a moving coordinate system is needed
because the amplitude of the surface oscillations aζ0n may be comparable to the
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Stokes boundary layer thickness δ (cf. the values presented in § 2). It is easy to show
that because the oscillations are small compared to the droplet radius, both rotation
and translation of the interface are small. In the present axisymmetric case spherical
radial and angular coordinates r and θ are replaced by y = r − a[1 + ζ(θ, t)] and
θ, where the surface perturbation ζ = O(ζ0n) = O(ε). The spatial derivatives ∂/∂r
and ∂/∂θ are replaced by ∂/∂y and ∂/∂θ − a(∂ζ/∂θ) ∂/∂y, respectively, and the time
derivative by ∂/∂t− a(∂ζ/∂t) ∂/∂y; also ∂/∂x = a−1∂/∂θ. The velocity relative to the
moving coordinate system is also introduced. It is easy to see that in the boundary
layer the leading terms in the θ-projection of the momentum equation are those in
(3.1b) and (3.3b). The largest additional terms would be of O(ε2) in (3.3b). Such terms
are not considered in the present asymptotic analysis, as discussed above.

4. Streaming flows inside and outside a droplet undergoing forced capillary
oscillations

The solutions of equations (3.5) should match with the inviscid flows given by (2.4)
away from the interface, and guarantee continuity of the velocity and shear stress at
the interface, as well as impenetrability of the interface. Accordingly they satisfy the
following boundary conditions:

u
(0)
1 = B1 sin (ωt)Ũ(x) as η → −∞, (4.1a)

u
(0)
2 = B2 sin (ωt)Ũ(x) as η → +∞, (4.1b)

y = 0, u
(0)
1 = u

(0)
2 , (4.1c)

y = 0, µ1

∂u
(0)
1

∂y
= µ2

∂u
(0)
2

∂y
, (4.1d)

y = 0, v
(0)
1 = v

(0)
2 = 0, (4.1e, f)

where

Ũ(x) =
d

dθ
[Pn(cos θ)], θ =

x

a
, (4.2a, b)

and η(y) is given below in (4.4a). The jump in the normal stresses at the interface
y = 0 should be in balance with the capillary pressure associated with an additional
deformation of the interface. It is discussed at the end of the present section.

The solution of equations (3.5) subject to the boundary conditions (4.1) is as
follows:

u
(0)
i = Ũ(x)[Bi sinωt+ miEi e

miη sin(ωt+ miη)], (4.3a)

v
(0)
i = −

√
2νi
ω

(
dŨ

dx
+
Ũ

r

dr

dx

)
[Biη sinωt+ 1

2
Ei sinωt e

miη(cosmiη + sinmiη)

+ 1
2
Ei cosωt emiη(sinmiη − cosmiη)− 1

2
Ei sinωt+ 1

2
Ei cosωt], (4.3b)

where

η = y

√
ω

2νi
, (4.4a)

mi =

{
+1 (i = 1 in liquid 1, where η < 0)

−1 (i = 2 in liquid 2, where η > 0),
(4.4b)
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E1 =
B2 − B1

1 + (µ1ρ1/µ2ρ2)1/2
, E2 =

B2 − B1

1 + (µ2ρ2/µ1ρ1)1/2
; (4.4c, d)

x is the arc length of the interface generatrix reckoned from the droplet bottom O1

(see figure 1).
At the next order of magnitude we seek to find a stationary streaming 〈u(1)

i 〉 and

〈v(1)
i 〉, with the averaging carried out over multiple cycles of the primary capillary

wave. Since 〈∂u(1)
i /∂t〉 = 0, equations (3.6) reduce to

∂〈u(1)
i 〉r
∂x

+
∂〈v(1)

i 〉r
∂y

= 0, (4.5a)

∂2〈u(1)
i 〉

∂η2
=

2

ω

〈
u

(0)
i

∂u
(0)
i

∂x
+ v

(0)
i

∂u
(0)
i

∂y
−U∗i ∂U∗i

∂x
− ∂∆Ui

∂t

〉
. (4.5b)

From the solution for the inviscid potential flow due to capillary waves, leading to
the characteristic equation (2.3), it is readily seen that the time dependence of ∆Ui is
given by ∆Ui ∼ sinωt. Therefore 〈∂∆Ui/∂t〉 = 0. Note that the time averaging we are
dealing with here and hereinafter means that

〈cos2 ωt〉 = 〈sin2 ωt〉 = 1
2
, 〈sinωt cosωt〉 = 0. (4.6a–c)

Substituting (2.4) and (4.3) in (4.5) and integrating, we obtain near the interface

〈u(1)
i 〉 =

1

ω
Ũ

dŨ

dx

(
E2
i

4
e2miη + BiEimi e

miη sinmiη

)
−Ei
ω

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)[
Bi

2
η emiη(cosmiη + sinmiη)

−Bimi emiη sinmiη − 1
2
Ei e

miη cosmiη

]
+ βi(x)η + αi(x), (4.7a)

〈v(1)
i 〉 = −

√
2νi
ω

{[
d

dx

(
Ũ

dŨ

dx

)
+

1

r

dr

dx
Ũ

dŨ

dx

]
1

ω

×
[
E2
i

8mi
e2miη +

BiEi

2
emiη(sinmiη − cosmiη)− E2

i

8mi
+
BiEi

2

]
−
[

d

dx

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)
+

1

r

dr

dx

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)]
×Ei
ω

[
Bimi

2
η emiη sinmiη − 3Bi

4
emiη(sinmiη − cosmiη)

− Eimi

4
emiη(cosmiη + sinmiη)− 3Bi

4
+
Eimi

4

]
+

(
dβi
dx

+
1

r

dr

dx
βi

)
η2

2
+

(
dαi
dx

+
1

r

dr

dx
αi

)
η

}
. (4.7b)

We subject the flow component 〈v(1)
i 〉 to the boundary condition 〈v(1)

i 〉 = 0 at η = 0.
Functions αi(x) and βi(x) resulted from integration in η. They will be found later
on when matching the inner streaming in the Stokes layers at the interface with the
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outer streaming flow in the bulk. For this matching the following limiting expressions
obtained from (4.7) will be used:

∂〈u(1)
i 〉
∂η

=
1

ω
Ũ

dŨ

dx

(
E2
i

2
mi + BiEi

)
+
Ei

ω

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)(
Bi

2
+
Eimi

2

)
+ βi

at η = 0, (4.8a)

〈u(1)
i 〉 = Ũ

dŨ

dx

E2
i

4ω
+

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)
E2
i

2ω
+ αi at η = 0. (4.8b)

The balance of the normal stresses at the interface y = 0 allows us to estimate a
posteriori an additional deformation of the interface due to the flow in the boundary
layers near it. Variation of the interface curvature relative to that of the inviscid
problem ∆K may be estimated from the above balance and the solutions (4.3) and
(4.7). Using (4.3), we obtain ∆K ∼ µiBi/σ. Since µi ∼ 10−2 g cm−1 s−1, Bi ∼ 1 cm s−1

and σ ∼ 102 g s−2 we obtain ∆K ∼ 10−4. Given the value of ε = 0.04 obtained from
(2.9), we see that µiBi/σ ∼ ε2, and 〈∆K 〉 ∼ ε2 due to the flow given by (4.3). Similarly
due to the flow given by (4.7), 〈∆K 〉 ∼ ε3. In both cases the variation of the interface
shape due to the flows in the Stokes layers near the interface is negligibly small, as
was assumed. It is seen from (4.7) and (4.8) that the magnitude of the inner streaming
velocity is B2

i /(ωa), as was assumed in (2.6).

5. Outer streaming
We now estimate the Reynolds number Res of the outer streaming in the bulk

entrained by the inner streaming. For Bs = 0.052 cm s−1 (cf. § 2), a = 0.71 cm and
νi ' 0.032 cm2 s−1, we find

Res =
Bsa

νi
= 1.15. (5.1)

A similar value of Res corresponds to the outer streaming flow inside an acoustically
levitated droplet, which is driven by the acoustic streaming in gas in the situation
studied by Yarin et al. (1999). There it was shown that the creeping flow approximation
represents quite accurately the flow structure found experimentally in spite of the fact
that at Res ∼ 1 the inertial forces begin to play some role. In the present case
the creeping flow solution may also be used as a first approximation of the outer
streaming. Note also that Res decreases with the droplet radius as a1/2.

The general solution of the Stokes equations for the creeping flow in spherical
harmonics is given in Lamb (1959, §§ 335 and 336). When it is applied in the case
of an almost spherical droplet with the only non-zero velocity component v(i)

θ at the
interface (the angular component), it can be shown (see Yarin et al. 1999) that the
harmonics χm ≡ 0 (in Lamb’s 1959 notation).

We consider here only the flow corresponding to mode n = 2 of the oscillations,
when due to (4.2)

Ũ
dŨ

dx
=

9

a
(2 sin θ cos3 θ − sin θ cos θ), (5.2a)

Ũ
dŨ

dx
+
Ũ2

r

dr

dx
=

9

a
(3 sin θ cos3 θ − sin θ cos θ). (5.2b)

Here θ is the angular spherical coordinate (with θ = 0 corresponding to the droplet
bottom, see figure 1).
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Bearing in mind that the outer streaming flow should be matched with the inner
flow (4.7), (4.8) and bearing in mind (5.2), we see easily that the outer streaming
inside the droplet subject to the condition of finiteness at R = 0 is described by the
Lamb’s solution (equations (8)–(11) and (15), pp. 596–597) with only four spherical
harmonics p2, ϕ2, p4 and ϕ4:(

p2

ϕ2

)
=

(
A1

γ1

)
1

2
(3X2 − R2), (5.3a)

(
p4

ϕ4

)
=

(
C1

D1

)
1

8
(35X4 − 30X2R2 + 3R4), (5.3b)

where the coefficients A1, γ1, C1 and D1 should be found via matching of the outer
and inner streaming. We denote by pm a solid harmonic of degree m and by ϕm an
arbitrary harmonic of degree m, using a notation similar to that of Lamb (1959).
Also X is the Cartesian coordinate associated with the droplet centre (with the X-axis
spanning the droplet bottom and top, O1 and O3, in figure 1), and R is the radial
spherical coordinate.

The outer streaming outside the droplet subject to the condition of finiteness at
R = ∞ is described by Lamb’s solution, again with only four spherical harmonics:(

p−3

ϕ−3

)
=

(
A2

γ2

)
1

2
(3X2 − R2)

1

R5
, (5.4a)

(
p−5

ϕ−5

)
=

(
C2

D2

)
1

8
(35X4 − 30X2R2 + 3R4)

1

R9
, (5.4b)

where the coefficients A2, γ2, C2, and D2 also to be found via matching of the outer
and inner streaming.

It is emphasized that the Lamb’s solution yields velocity components in Cartesian
coordinates. A simple transformation should be used to obtain from it the velocity
components in spherical coordinates vR,i and vθ,i, as well as the stress σRθ,i used below
(cf. Yarin et al. 1999).

6. Matching of the inner and outer streaming inside and outside the droplet
Matching of the inner and outer streaming flows in liquid 1 near the interface

is achieved using the following boundary conditions for the tangential velocity and
shear stress:

R = a− 0 (y = −0, η → −∞), 〈u(1)
1 〉 = vθ,1, (6.1a)

R = a− 0 (y = −0, η → −∞), µ1
∂〈u(1)

1 〉
∂y

= σRθ,1. (6.1b)

From the outer solution it is easy to show that vR,1|R=a−0 = 0 as it also should be for
the matching.

For matching in liquid 2 near the interface the following boundary conditions
should be satisfied by the tangential velocity and shear stress:

R = a+ 0 (y = +0, η → +∞), 〈u(1)
2 〉 = vθ,2, (6.2a)

R = a+ 0 (y = +0, η → +∞), µ2
∂〈u(1)

2 〉
∂y

= σRθ,2. (6.2b)
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The radial velocity component vR,2 cancels out automatically at R = a+0, as it should
for the matching.

We continue to discuss the case n = 2. Here, bearing in mind expressions (5.2), we
present the streaming velocity at the outer boundary of the Stokes layers αi, as well
as βi in the following form:

αi = αi1(2 sin θ cos3 θ − sin θ cos θ) + αi2(3 sin θ cos3 θ − sin θ cos θ), (6.3a)

βi = βi1(2 sin θ cos3 θ − sin θ cos θ) + βi2(3 sin θ cos3 θ − sin θ cos θ). (6.3b)

Substituting (4.7a), (6.3), and the expressions for vθ,1 and σRθ,1 based on (5.3) in the
conditions (6.1), and using expression (9) of Lamb (1959, p. 596) at R = a, we obtain
expressions for the coefficients of the spherical harmonics in liquid 1 A1, γ1, C1, D1 via
α11, α12, which also yields relations between β11, β12, and α11, α12. Additionally, using
(4.7a), (6.3), the expressions for vθ,2 and σRθ,2 based on (5.4), as well as equation (9)
of Lamb (1959, p. 596) at R = a, we obtain from the conditions (6.2) expressions for
the coefficients of the spherical harmonics in liquid 2 A2, γ2, C2, D2 via α21, α22, which
also yields relations between β21, β22, and α21, α22.

For matching of the inner streaming flows in the Stokes layers (4.7) at the interface,
we pose the following conditions:

η = 0, 〈u(1)
1 〉 = 〈u(1)

2 〉, (6.4a)

η = 0, µ1
∂〈u(1)

1 〉
∂y

= µ2
∂〈u(1)

2 〉
∂y

. (6.4b)

From these, using also (4.8a, b) and the relations between β11, β12 and α11, α12, as well
as between β21, β22 and α21, α22, we arrive at a set of four equations for the four
unknowns α11, α12, α21, and α22:

α11 =
9

4ωa
(E2

2 − E2
1 ) + α21, (6.5a)

α22 =
9

2ωa
(E2

1 − E2
2 ) + α12, (6.5b)

µ1(51α11 + 24α12) + µ2(51α21 + 24α22)

= 63

[√
µ2ρ2

2ω

(
−E

2
2

2
+ B2E2

)
−
√
µ1ρ1

2ω

(
E2

1

2
+ B1E1

)]
, (6.5c)

µ1(8α11 + 47α12) + µ2(8α21 + 47α22)

= 63

[√
µ2ρ2

2ω

E2

2
(B2 − E2)−

√
µ1ρ1

2ω

E1

2
(B1 + E1)

]
. (6.5d)

Solving equations (6.5) and rendering the velocities uint, u
′
int, u

′′
int, α11, α12, α21 and

α22 dimensionless by the velocity scale of the streaming flow B2
1/ωa (cf. (2.6)) with

B1 given by (2.5a), we arrive at the following expression to calculate the interfacial
velocity ūint (overbars denote dimensionless parameters):

uint = u′int(2 sin θ cos3 θ − sin θ cos θ) + u′′int(3 sin θ cos3 θ − sin θ cos θ), (6.6)

where

u′int = 9
4
Ē2

1 + ᾱ11, u′′int = 9
2
Ē2

1 + ᾱ12, (6.7a, b)
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B̄2 = − 2
3
, Ē1 =

B̄2 − 1

1 + (µ1ρ1/µ2ρ2)1/2
, Ē2 =

B̄2 − 1

1 + (µ2ρ2/µ1ρ1)1/2
, (6.7c–e)

K ′ =
63

1 + µ2/µ1

(
ρ1ωa

2

2µ1

)1/2
[(

µ2ρ2

µ1ρ1

)1/2(
− Ē

2
2

2
+ B̄2Ē2

)
−
(
Ē2

1

2
+ Ē1

)]

− 459

4(1 + µ2/µ1)
(Ē2

2 − Ē2
1 )− 108µ2/µ1

1 + µ2/µ1

(Ē2
1 − Ē2

2 ), (6.7f)

K ′′ =
63

1 + µ2/µ1

(
ρ1ωa

2

2µ1

)1/2
[(

µ2ρ2

µ1ρ1

)1/2
Ē2

2
(B̄2 − Ē2)− Ē1

2
(1 + Ē1)

]

− 18

1 + µ2/µ1

(Ē2
2 − Ē2

1 )− 423µ2/µ1

2(1 + µ2/µ1)
(Ē2

1 − Ē2
2 ), (6.7g)

ᾱ21 =
47K ′ − 24K ′′

2205
, ᾱ12 =

51K ′′ − 8K ′

2205
,

ᾱ11 = 9
4
(Ē2

2 − Ē2
1 ) + ᾱ21, ᾱ22 = 9

2
(Ē2

1 − Ē2
2 ) + ᾱ12.

 (6.7h–k)

Note that B2, E1 and E2 are rendered dimensionless by B1.
We can introduce the stream function of the outer streaming flow ψ by the relations

∂ψ

∂R
= −vθR sin θ,

∂ψ

∂θ
= vRR

2 sin θ. (6.8a, b)

Using the appropriate harmonics from (5.3) and (5.4), we find from (6.8) the stream
functions ψ1 and ψ2 in liquids 1 and 2, respectively:

ψ̄1 =
Ā1

14
sin2 θ cos θ(R̄5 − R̄3)− C̄1

44
(7 cos5 θ − 10 cos3 θ + 3 cos θ)(R̄7 − R̄5), (6.9a)

ψ̄2 =
Ā2

4
sin2 θ cos θ

(
1− 1

R̄2

)
− 5C̄2

112
(7 cos5 θ−10 cos3 θ + 3 cos θ)

(
1

R̄2
− 1

R̄4

)
. (6.9b)

The stream functions and the radial coordinate R are rendered dimensionless respec-
tively by B2

1a
2/(ωa) and by a, and the dimensionless coefficients involved in (6.9) are

given by

Ā1 = ᾱ11 − 2ᾱ12, C̄1 = − 22
7

(2ᾱ11 + 3ᾱ12), (6.10a, b)

Ā2 = 2
7
(ᾱ21 − 2ᾱ22), C̄2 = − 8

5
(2ᾱ21 + 3ᾱ22). (6.10c, d)

The velocities ᾱi1 and ᾱi2 entering (6.10) have already been found from (6.7h–k).
Therefore expressions (6.9) and (6.10) allow graphical representation of the streamlines
both inside and outside the drop.

7. Particular cases of the flow fields generated by the oscillating droplet
If liquid outside the droplet is inviscid, µ2 = 0, then by (6.7c–e) Ē1 = 0 and

Ē2 = −5/3. Therefore by (6.7f, g) K ′ = −1275/4, and K ′′ = −50. We also obtain
ᾱ21 = −25/4 and thus ᾱ11 = 0. Also ᾱ12 = 0. Thus we obtain in this particular case

u′int = u′′int = uint = 0.
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Figure 2. Steamlines of the d.c. secondary flow in the case ρ1 = ρ2 = 1 g cm−3, µ1 = µ2 = 0.01
g cm−1 s−1, σ = 70 g s−2, and a = 0.71 cm. In this case ω = 30.64 s−1, ᾱ11 = 12.96, ᾱ12 = −2.21,

ᾱ21 = 12.96 and ᾱ22 = −2.21. Also u′int = 14.52, u′′int = 0.92 and cos θS = 0.697.

Consider also the case where µ1 = µ2 and ρ1 = ρ2. Here Ē1 = Ē2 = −5/6 and thus

K ′ =
175

8

(
ρ1ωa

2

2µ1

)1/2

, K
′′

= 0. (7.1a, b)

Taking ρ1 = 1 g cm−3, a = 0.71 cm, ω = 30.64 s−1 and µ1 = 10−2 g cm−1 s−1 and using
(7.1) and the expressions for αij and u′int and u′′int from (6.7), we find

uint = 14.52(2 sin θ cos3 θ − sin θ cos θ) + 0.92(3 sin θ cos3 θ − sin θ cos θ), (7.2)

In another particular case, where µ2 = ∞, we obtain Ē1 = −5/3, Ē2 = 0, K ′ = −300,

K ′′ = −1175/2, ᾱ21 = 0, ᾱ12 = −25/2, and u′int = u′′int = uint = 0.
Let us demonstrate the velocity fields of the stationary streaming flow. In figure 2

the streamlines calculated using the expressions (6.9) are shown for the case ρ1 =
ρ2 = 1 g cm−3, µ1 = µ2 = 0.01 g cm−1 s−1, σ = 70 g s−2, and a = 0.71 cm. In this case
the interfacial velocity is given by (7.2). The droplet spans the domain 0 6 R̄ 6 1,
whereas the outer liquid is shown, as an example, in the domain 1 6 R̄ 6 3. The
flow inside the droplet consists, in the present case of n = 2, of four toroidal vortices.
The stagnation points of the d.c. streaming flow at the droplet surface appear at the
bottom (θ = 0), equator (θ = π/2) and top (θ = π), as well as at the middle points S1

and S2 corresponding to

cos2 θS =
u′int + u′′int

2u′int + 3u′′int
(7.3)
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Figure 3. As figure 2 but for µ1 = 0.01 g cm−1 s−1, µ2 = 0.02 g cm−1 s−1. In this case ω = 30.64 s−1,

ᾱ11 = 9.41, ᾱ12 = −3.15, ᾱ21 = 10.48, and ᾱ22 = −1.01. Also u′int = 11.55 and u′′int = 1.14.
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Figure 4. Effect of the viscosity ratio µ2/µ1 on the interfacial velocity. In this case ρ1 = ρ2 =

1 g cm−3, µ1 = 0.01 g cm−1 s−1, µ2 is variable, σ = 70 g s−2, and a = 0.71 cm. Curve (a) u′int, (b) u′′int.

A similar flow pattern for the case ρ1 = ρ2 = 1 g cm−3, µ1 = 0.01 g cm−1 s−1, µ2 =
0.02 g cm−1 s−1, σ = 70 g s−2, and a = 0.71 cm is shown in figure 3.

Figures 4, 5 and 6 show the effect of the ratios µ2/µ1, ρ2/ρ1, and of the interfacial

tension coefficient σ, respectively, on the values of u′int and u′′int characterizing the
magnitude of the interfacial velocity uint.
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Figure 5. Effect of the density ratio ρ2/ρ1 on the interfacial velocity. In this case ρ1 = 1 g cm−3,

ρ2 is variable, µ1 = µ2 = 0.01 g cm−1 s−1, σ = 70 g s−2, and a = 0.71 cm. Curve (a) u′int, (b) u′′int.
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Figure 6. Effect of the interfacial tension σ on the interfacial velocity. In this case

ρ1 = ρ2 = 1 g cm−3, µ1 = µ2 = 0.01 g cm−1 s−1, and a = 0.71 cm. Curve (a) u′int, (b) u′′int.

The question arises of what will an experimentalist observe when visualizing flows
generated by oscillating droplets. The primary motion in this case, corresponding to
the one discussed in Lamb (1959, paragraph 275) and leading to the spectrum (2.3),
is given by the stream function

Ψ =

[
sinωt

ζ0nωa
3

n(n+ 1)

]
R̄n+1 sin θ

d

dθ
[Pn(cos θ)], (7.4)

which yields for n = 2

Ψ |n=2 =

[
− sinωt

ζ0nωa
3

2

]
R̄3 sin2 θ cos θ (7.5)
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and for n = 3

Ψ |n=3 =

[
sinωt

ζ0nωa
3

24

]
R̄4 sin2 θ(3− 15 cos2 θ). (7.6)

It is easy to see that liquid particles as well as seeding particles used for visualization
will oscillate in such flows near their initial positions along stationary isolines R̄ = R̄(θ)
given by

R̄3 sin2 θ cos θ = const, (7.7)

in the case n = 2, and by

R̄4 sin2 θ(3− 15 cos2 θ) = const (7.8)

in the case n = 3 (cf. figures 7a and 7b). These isolines are strikingly similar to those
shown in the photographs of figure 12 in Trinh et al. (1982), and figures 12–15(a)
in Trinh & Wang (1982) for modes n = 2 and 3, which may mean that the photographs
actually reveal oscillatory motion of the seeding particles along the stationary isolines.
Such a motion should have no effect on mass transfer on the average. On the other
hand, a special experimental technique is called for to uncover the steady d.c. streaming
depicted in figures 2 and 3 above.

8. Mass transfer due to steady streaming in the case of an oscillating droplet
in a liquid–liquid system

We begin consideration of the mass transfer of a passive scalar soluble in liquids
1 and 2 through the interface with an estimate of the thickness of the diffusion
boundary layer δD , given by

δD ∼ a

(Bia/Di)1/2
, (8.1)

where Di are the respective diffusion coefficients of the scalar in the two liquids. Its
ratio to the thickness of the dynamic Stokes layers δS ∼ (2νi/ω)1/2 is given by

δD

δS
∼ 1√

2εSc
, (8.2)

where according to (2.9) ε ∼ Bi/(aω) ∼ ζ0n, and the Schmidt number Sc = νi/Di.
The physical process we are dealing with here is intended for protein extrac-
tion/concentration. The diffusion coefficient Di of proteins is extremely small, which
is the main reason for the search for ways to enhance the process. The smallness of Di

results in large values of the Schmidt number. Taking as an estimate Sc = 1.4× 103

and ε = 0.04 (cf. § 2), we obtain from (8.2) δD/δS ≈ 0.094. Therefore the diffusion
boundary layers is situated at the bottoms of the Stokes layers near the interface.
Since the assumption that δD � δS approximately holds, we only need the velocity of
the stationary streaming very close to the interface to calculate the mass transfer rate
of a passive scalar through the interface.

Denote the concentration of the scalar in liquids 1 and 2 by c, with a dimension-
ality g cm−3. Initially we consider both liquids simultaneously, dispensing with the
subscripts (or superscripts) i. The diffusion equation reads

∂c

∂t
+ ub

∂c

∂x
+ vb

∂c

∂y
= D ∂

2c

∂y2
, (8.3)

where subscript b denotes the velocity components in the vicinity of the interface,
close to the bottom of the Stokes layers (cf. (8.4) and (8.7) below).
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Figure 7. The stationary isolines, over which particles oscillate in the primary flow.
(a) n = 2, (b) n = 3.
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As has been mentioned before, for the small diffusion coefficient characteristic of
proteins the mass transfer processes take place not over the whole thickness of the
dynamic boundary layer, but only close to the interface. In this region the velocity is
practically the same as at the interface, which is accounted for in equation (8.3). On
the other hand, Mei & Chian (1994), Mei, Fan & Jin (1997), and Mei, Chian & Ye
(1998) considered the case of the Schmidt number of order one (cf. (2.11) in Mei &
Chian 1994). This means that the thicknesses of the dynamic and diffusion boundary
layers were of the same order of magnitude, and the whole flow field affected the
mass transfer processes. The assumption (2.11) in Mei & Chian (1994) has been
explicitly used to arrive at equation (2.4′) in that work, which was the basis for the
whole multiple-scale procedure leading to equation (2.29) there. That equation, indeed,
shows that an average of the variation of the flow field inside the whole boundary
layer affects transport of the fine particles considered in that work. This however, is
only due to the assumption that the kinematic viscosity ν and the diffusion coefficient
D are of the same order of magnitude (which is a plausible approximation for the
turbulent flows considered in the above-mentioned works). The physical situation in
the present work is totally different. In laminar flows of protein solutions D � ν,
and thus, equation (8.3) differs from (2.29) of Mei & Chian (1994) and from (5.21)
or (5.22) of Mei et al. (1998).

The velocity components ub and vb are given by

ub = u
(0)
b + u

(1)
b , vb = v

(0)
b + v

(1)
b , (8.4a, b)

where u(0)
b and v

(0)
b are given by (4.3) at η = 0, and u

(1)
b = u

(1)
1 as η → −0 or u(1)

2 as

η → +0, v(1)
b = v

(1)
1 as η → −0 or v(1)

2 as η → +0.
We split the concentration into steady (cs) and unsteady, variable (cu) parts

c = cs + cu. (8.5)

It may be shown (for example, cf. Yarin et al. 1999) that the time-average mass
transfer depends only on cs, and the diffusion problem reduces to the following
equation:

〈u(1)
b,i 〉∂cs,i∂x

+ 〈v(1)
b,i 〉∂cs,i∂y

= Di

∂2cs,i

∂y2
, (8.6)

where according to (4.8b) and (4.7b)

〈u(1)
b,i 〉 = Ũ

dŨ

dx

E2
i

4ω
+

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)
E2
i

2ω
+ αi, (8.7a)

〈v(1)
b,i 〉 = −1

r

∂〈u(1)
b,i 〉r
∂x

y = −
{[

d

dx

(
Ũ

dŨ

dx

)
+

1

r

dr

dx
Ũ

dŨ

dx

]
E2
i

4ω

+

[
d

dx

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)
+

1

r

dr

dx

(
Ũ

dŨ

dx
+
Ũ2

r

dr

dx

)]
E2
i

2ω

+

(
dαi
dx

+
1

r

dr

dx
αi

)}
y. (8.7b)

Equation (8.6) can be rewritten in the form

∂2cs,i

∂y2
+ Pi(x)y

∂cs,i

∂y
= Qi(x)

∂cs,i

∂x
, (8.8)
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where

Pi(x) =
1

r

∂〈u(1)
b,i 〉r
∂x

1

Di

, Qi(x) =
1

Di

qi(x), qi(x) = 〈u(1)
b,i 〉. (8.9a–c)

The solution for the concentration cs,i is subject to the following boundary conditions:

y → −∞: cs,1 = cs∞,1, (8.10a)

y → +∞: cs,2 = cs∞,2, (8.10b)

y = 0: −D1

∂cs,1

∂y
= −D2

∂cs,2

∂y
, cs,1 = cs,2. (8.10c)

The boundary conditions (8.10a, b) assume that the bulk is well-mixed. This assump-
tion is supported by the results of Baier et al. (1999).

The solution of (8.8)–(8.10) is given by (cf. Yarin et al. 1999)

cs,1 =
cs∞,1 + κcs∞,2

1 + κ
− κ(cs∞,1 − cs∞,2)

1 + κ
erf (Z/2), (8.11a)

cs,2 =
cs∞,1 + κcs∞,2

1 + κ
− (cs∞,1 − cs∞,2)

1 + κ
erf (Z/2), (8.11b)

where

κ = (D2/D1)
1/2, (8.12a)

Z = y

[∣∣∣∣∫ x

xst

exp (W (ξ)−W (x))

Qi(ξ)
dξ

∣∣∣∣]−1/2

, (8.12b)

W (x) = 2

∫ x

const

Pi(ξ)

Qi(ξ)
dξ. (8.12c)

Note that W (x) is independent of i, in spite of the fact that Pi and Qi depend on it

(cf. (8.9a, b)). The coordinate of a stagnation point is denoted xst. As the lower limit
in the integral in Z (cf. (8.12b)), we take the stagnation point of the streaming flow
corresponding to the droplet equator θ = π/2. Considering mode n = 2 and using
(5.2), (6.3a), (8.7) and (8.9), we find the following expressions for the mass flux of the
admixture at the interface:

〈j1〉|y=0 = 〈j2〉|y=0 =

√D2(cs∞,1 − cs∞,2)
1 + κ

2

(
12

πa

)1/2

I

(
B2

1

ωa

)1/2

f(θ). (8.13)

Here 〈j1〉|y=0 = 〈−Di ∂ci/∂y〉|y=0, and f(θ) is given by (8.16b) below.
Denote the time-average mass transfer coefficient 〈hm〉 and the Sherwood number

〈Sh〉. Then

〈hm〉(cs∞,1 − cs∞,2) = 〈ji〉|y=0, (8.14a)

〈Sh〉 =
〈hm〉a
D1

. (8.14b)

Space averaging is given in the present case as

〈Sh〉 =

∫ l

0

〈Sh〉r dx

/∫ l

0

r dx, (8.15)

where l is half the perimeter of the droplet cross-section. Using (8.13)–(8.15) we obtain
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Figure 8. Distributions of the parameters relevant for mass transfer due to d.c. streaming generated
by droplet oscillations in mode n = 2. Curve (a) shows the magnitude of the normalized tangential
velocity of the primary flow, (b) the interfacial velocity of the streaming flow, (c) the normalized
local Sherwood number, and (d) its space-average value. The values of the parameters correspond
to those of figure 2.

the local time-average Sherwood number as

〈Sh〉 =
κ

1 + κ
2

(
12

π

)1/2

f(θ)
|B1|

(ωD1)1/2
, (8.16a)

f(θ) =
| sin2 θ cos θ[u′int(2 cos2 θ − 1) + u′′int(3 cos2 θ − 1)]|

[2(2u′int + 3u′′int)(1− sin6 θ) + 3(u′int + 2u′′int)(sin
4 θ − 1)]1/2

, (8.16b)

and the space-average as

〈Sh〉 =
κ

1 + κ
2

(
12

π

)1/2

f̄
|B1|

(ωD1)1/2
, (8.17a)

f̄ =

∫ π/2

0

f1(θ1) dθ1, (8.17b)

f1(θ1) =
cos3 θ1 sin θ1|[u′int(2 sin2 θ1 − 1) + u′′int(3 sin2 θ1 − 1)]|

[2(2u′int + 3u′′int)(1− cos6 θ1) + 3(u′int + 2u′′int)(cos4 θ1 − 1)]1/2
. (8.17c)

As θ tends to π/2 or θ1 to 0, both f(θ) in (8.16b) and f1(θ1) in (8.17c) tend to the

same limit [(u′int + u′′int)/6]1/2.
Expressions (8.16) show that the local Sherwood number is zero at the bottom

and top of the droplet (oscillating in mode n = 2) at θ = 0 and π, respectively. Also
〈Sh〉 = 0 at θ = θS corresponding to the stagnation points S1 and S2 (cf. figure 2). On
the other hand, at the droplet equator θ = π/2, the local Sherwood number reaches
its maximum. This is clearly seen in figure 8, where the following curves are plotted:
(a) the magnitude of the normalized tangential velocity of the primary flow given in
the case n = 2 by −dP2(cos θ)/dθ = 3 sin θ cos θ according to (2.4) and (2.5a); (b) uint
given by (7.2); (c) the normalized local Sherwood number f(θ) according to (8.16);
(d) its space-average value f̄.

Droplet oscillations generate stationary d.c. streaming near the interface which
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enhances mass transfer through it. Indeed, expressions (8.16a) and (8.17a) show
that the values of the Sherwood number increased by a factor of the order of
|B1|/(ωD1)

1/2 ∼ (Bsa/D1)
1/2 ∼ (|uint|a/D1)

1/2, where |uint| is the magnitude of the
interfacial streaming velocity. Taking |uint| ∼ Bs ∼ 0.052 cm s−1, a = 0.71 cm and
D1 = 0.71× 10−5 cm2 s−1, we estimate the factor as 72.

9. Summary and concluding remarks
We can summarize the findings in the present work as follows:
(i) It was shown that standing capillary waves forced at liquid–liquid interfaces

lead to significant stationary vortical d.c. flows in the adjoining liquids. Stationary
streaming in the Stokes layers near the interface, as well as the corresponding outer
streaming (the vortices) in the bulk, were calculated for a liquid droplet immersed in
an immiscible liquid.

(ii) It is argued that previous experiments did not reveal the structure of these
flows, which however can be traced, for example, by measuring the mass transfer rate
of a passive scalar between the adjoining masses of liquids.

(iii) Based on the velocity fields found, the mass transfer equation yielded the mass
flux at the interface. It was also shown that it can undergo a drastic increase due
to the d.c. secondary vertical flows resulting from the standing waves. The effective
diffusion coefficient Deff appears to be of the order of D1[|uint| a/D1]

1/2, where |uint|
is the magnitude of the interfacial streaming velocity, a is the droplet radius, D1

the diffusion coefficient in liquid 1 (inside the droplet). The time- and space-average
Sherwood numbers 〈Sh〉, and 〈Sh〉 are of the order of Sh0[|uint| a/D1]

1/2 (Sh0 being
the Sherwood number corresponding to purely diffusional mass transfer), which can
easily exceed Sh0 by two orders of magnitude.

(iv) It is emphasized that the vortical streaming flows lead to enhanced convective
transport of the scalar towards the interface, with the resulting steep concentration
gradients there. The latter in turn can enhance drastically the mass flux even though
the molecular diffusion coefficients Di are small.

(v) Similar effects are expected in other flow geometries, for example at the
interface between two immiscible planar liquid layers in a narrow channel. Longuet-
Higgins (1953) considered several cases of the outer d.c. streaming flow driven by the
inner streaming in the Stokes layers due to progressive or standing waves in a single
liquid layer. In a series of papers Dore (1970, 1972, 1973) extended the theory for
several cases corresponding to the two-layer systems. In all these works the problem
considered was purely hydrodynamic (only the streaming flows were calculated). In a
separate work to be submitted elsewhere (Yarin 2001) the present author calculated
the inter-layer mass transfer rate of a passive scalar in the case of two planar liquid
layers in a narrow channel. It has been shown that due to the standing capillary
wave at the interface between the layers the enhancement of the effective diffusion
coefficient Deff and the Sherwood numbers 〈Sh〉 and 〈Sh〉 is described by the above
expressions with λ (the wavelength) instead of the droplet radius a.

(vi) Enhancement of the mass flux at liquid–liquid interfaces is of importance in
novel bioseparators designed for transferring an admixture from one of the liquids
into the other. For example, two-fluid Taylor–Couette flow is an attractive candidate
as a key element of novel bioseparator devices, since it is expected that the secondary
Taylor vortices will enhance mass transfer of a passive scalar (e.g. a protein) at a
liquid–liquid interface (Baier & Graham 1998; Baier et al. 1999). Secondary Dean
vortices arising in flows in curved (helical) pipes have already found application
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in a novel biotechnological module (Gehlert, Luque & Belfort 1998; Kluge et al.
1999; Luque et al. 1999). In these applications secondary Dean vortices are used to
prevent blockage of permeable tubular membranes. However, efforts are also made
to generate Dean vortices in two-fluid flows in curved/helical pipes to enhance mass
transfer between the phases. A similar effect can also be achieved using natural
convection in a horizontal annular pipe with a two-fluid throughflow. However, it is
possible to show that significant secondary flows can be achieved only at temperature
differences between the inner and outer walls, which might be dangerous for many
biomaterials.

In the light of different ideas on novel bioseparators mentioned above, the one
considered in the present work possesses an advantage, since it incorporates both
an enlarged interfacial area in emulsions of tiny droplets, as well as mass transfer
enhancement due to the secondary vortices. Also, in the present case an internal flow
inside droplets can be introduced in a controlled manner, which may be beneficial for
protein crystal growth (cf. Chung & Trinh 1998). It should be added that secondary
vortical flows inside droplets can also be generated using time-periodic electric fields,
which also results in mass transfer enhancement (Lee, Im & Kang 2000).

This research was supported in part by BSF – the United States–Israel Binational
Foundation, Research Grant No. 97-118. The author acknowledges an anonymous
referee who drew his attention to the works of Dore.
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